Nuclear Fission Theory

By Barrie Lawson, UK

Nuclear Reactions

In the chemical reactions associated with combustion, the atoms in the molecules of the active materials rearrange themselves into new, more stable, molecules in which they are more tightly bound and in the process, releasing surplus energy in the form of heat.

In nuclear reactions it is the sub-atomic particles in the atomic nucleus, the protons and neutrons, which rearrange themselves to form new elements or isotopes with more stable nuclei. In this case the energy released by the reaction in the form of kinetic energy (manifest as heat) and electromagnetic energy (gamma radiation) is millions of times greater. See Energy Content

Note: The reactions discussed on this page are all nuclear reactions not chemical reactions.

Practical applications of the use of nuclear energy to generate electricity are given on the Nuclear Energy – The Practice page

Atomic Structure

Atomic Structure and Energy Levels

Definitions

The diagram above shows a representation of the constituents of an atom using Lithium as an example.

  • Notation
    • Atomic Number Z – is the number of protons in the nucleus
    • The Lithium atom has three electrons occupying 2 energy levels and three protons giving it an atomic number Z = 3 .

    • Atomic Mass A – is the number of nucleons in the nucleus.
    • The nucleus also includes four neutrons making up its seven nucleons and thus a mass number A = 7

    • Atomic Structure
    • The structure may be indicated by appending the mass number A after the name of the element or by indicating it as a superscript preceding the chemical symbol. Thus Lithium-7 or 7Li.

      The symbol may also indicate the full atomic structure ALiZ) by adding a subscript representing the atomic number Z preferably before, but alternatively after, the chemical symbol (depending on the capability of your word processor). Thus  7Li3

    An isotope of Uranium with 143 neutrons is called Uranium-235 and may be represented as  235U  or 235U92

  • Electron (e) – a fundamental subatomic particle which carries a negative electric charge.

    It has a mass of 9.1 X 10-31 Kg, and an electric charge of 1.602 X 10-19 Coulombs (denoted as -e)

    The electron gives rise to the electromagnetic properties of the atom as well as the chemical bonding with the nuclei of adjacent atoms. It can be bound to the atom or it can lead an independent life outside.

  • Energy Levels – Electrons can only contain distinct quanta of energy. This is often represented graphically as having distinct energy levels or electron orbits.
  • Spin – Is the intrinsic angular momentum about their own axis of subatomic particles, such as electrons. Electrons also possess orbital angular momentum about the nucleus of the atom. See also Pauli and Spin
  • Positron (e+) – the antiparticle of the electron with same mass and spin but with a positive charge equal in magnitude to that of the electron’s negative charge. Every particle has a corresponding antiparticle. See also Dirac and the Positron.
  • Proton (p) – a subatomic particle with a positive electric charge of equal magnitude, but opposite sign, to the charge on the electron. It is much larger than the electron and has a mass of 1.6726 X 10-27 Kg about 1836 times the electron’s mass. Together with the neutrons, the protons form the nucleus of the atom. The number of protons in the nucleus is called the atomic number Z and this determines the atom’s chemical properties.
  • Neutron (n) – a subatomic particle with no net electric charge. It has a mass of 1.6749 X 10-27 Kg, slightly more than a proton. Free neutrons are not found in nature. They would decay into protons and electrons.
    • Fast Neutron – A high energy neutron moving at around 20,000 Km/s with very high energy of more than 1 Mev
    • Thermal Neutron – A slow speed neutron moving at about 2.2 km/s with energy less than 1 eV
  • Neutrino (ν) – very small subatomic, elementary particles without an electric charge which are produced by the decay of radioactive elements. Neutrinos and anti neutrinos are affected only by the weak nuclear force. Like the neutron, having no charge, they are not affected by electromagnetic forces. See also Pauli’s Neutrino
  • Antineutrino (ν) – the antiparticles of neutrinos emitted during beta decay in which a neutron decays into a proton, electron, and antineutrino.
  • Nucleus – the very small dense region at the centre of an atom consisting of protons and neutrons. It contains nearly all the mass of the atom.
  • Nucleon – the common name for the protons and the neutrons which make up the nucleus of an atom. The mass number A is the number of nucleons in the nucleus.
  • Nuclide – a specific type of nucleus associated with a particular atom, characterized by its nuclear properties, such as the number of neutrons and protons and the energy state of its nucleus which differentiates it from the nuclei of other atoms.
  • Isotopes – elements or atoms which have two or more nuclides with the same number of protons but a different number of neutrons. They are distinguished by their mass number. That is the total number of protons and neutrons in the nucleus.
  • Since different isotopes of an element all have the same number of protons and electrons, they have the same or similar chemical properties, but they differ in mass due to the different numbers of neutrons in the nucleus and because of this the nucleus may be unstable. Too many or too few neutrons may make the nucleus liable to decay.

  • Coulomb Forces – the electrostatic forces between charged particles. Oppositely charged particles attract eachother and similarly charged particles repel eachother. The Coulomb force is the force which binds negatively charged electrons to the positively charged nuclei of atoms. The variation of the force with the distance between particles obeys the inverse square law.
  • The Strong Nuclear Force – one of nature’s four fundamental forces. It is an attractive force which holds together the nucleons (neutrons as well as protons) in the nucleus of an atom against the repulsive Coulomb forces due to all the positive charges on the protons which would otherwise cause the nucleus to fly apart. The magnitude of the strong nuclear force is much greater than the electrical Coulomb force binding the electrons to the nucleus but it is only effective over a very short range of about 10-15 metres. Though no law governing the action of the strong force between particles has been formulated, some theorists have suggested that, as an approximation, the magnitude varies inversely as the seventh power of the distance between the particles since this is consistent with its very restricted effective range.
  • The Weak Nuclear Force – another of nature’s fundamental forces, (the others are electromagnetism and gravitation). It governs the the radioactive decay of unstable subatomic particles and nuclear fission. The weak reaction is a form of radioactivity which can transform a neutron into proton and a proton into neutron, resulting in transmutation of the elements, with the following two reactions:
    • Electron Decay – A neutron is transformed into a proton by losing a negatively charged electron (beta particle) and an antineutrino and is left with a positive charge.
    • n ⇒ p + e + ν

      See also Pauli and Beta Decay.

      Electron or beta decay is the basis of radiocarbon dating when the radiocarbon isotope of Carbon is transmuted into Nitrogen by beta decay. See explanation of radiocarbon dating.

    • Positron Decay – A proton is transformed into a neutron by losing a positively charged positron and a neutrino leaving it with no charge.
    • p ⇒ n + e+ + ν

      It is positron decay which initiates the Sun’s nuclear fusion. A Hydrogen atom (proton) is transformed into a neutron which then fuses with another Hydrogen atom under the Sun’s conditions of extreme temperature and pressure to form Deuterium an isotope of Hydrogen. The Deuterium nuclei undergo further fusion reactions to produce Helium with the release of huge amounts of energy. See more about Deuterium Fusion Fuels below.

    The effectiveness of the weak force is confined to a distance range of 10-17 metres, about 1 percent of the diameter of a typical atomic nucleus.

  • Binding Energy is derived from the strong nuclear force. It is defined as the energy that is released when a nucleus is assembled from its constituent nucleons and is thus a measure of the amount of energy held within the bonds of the atom and corresponds to the energy required to be put in again to pull the nucleus apart. The mass of the nucleus of an atom is less than the sum of its constituent protons and neutrons (the nucleons) and the difference represents the mass equivalent of the binding energy given by Einstein’s mass-energy equivalence formula
    Eb=ΔMc2

    Where Eb is the binding energy and ΔM is the mass difference.

  • The larger the nucleus, the greater the internal repulsive forces due to the greater number of protons and less energy must be applied to remove a nucleon from the nucleus, hence the binding energy is lower. The greater the binding energy, the more stable the atom is. The following graph shows the binding energy of nucleons of different elements. The total binding energy of the nucleus is given by multiplying the nucleon binding energy by the number of nucleons in the nucleus (The atomic mass A).

    Nuclear Binding Energy

    When there is an increase in the total binding energy of a system, the system has become more stable by releasing an amount of energy equal to the increase in the total binding energy of the system. Therefore, the energy liberated in the fission or fusion processes is equal to the increase in the total binding energy of the system.

  • Mass DefectMass Deficiency This is the difference between the mass of a nuclide and the sum of the masses of its individual nucleons. Both of these factors can be measured by mass spectrography and in practice, this provides a way of determining the binding energy. Once this mass difference, is known, the binding energy of any nucleus can be calculated from Einstein’s formula E = mc² . The mass defect of a nucleus is thus the mass equivalent of the energy released by the fusion of its constituent nucleons.
Decay, Fission and Fusion

Three different types of nuclear reactions are possible.

  • Nuclear decay occurs when small bits of the atomic nucleus are ejected from an unstable atom transforming it into a different, more stable species. Decay resulting from ejection of Helium atoms (alpha particles) is known as alpha decay, while decay resulting from the ejection of electrons (beta particles) is known as beta decay.
  • The timescales for the decay of unstable isotopes range from fractions of a second to billions of years. See examples below.

  • Fission is the splitting of an atom to form two complete smaller atoms.
  • When a large unstable nuclide splits into two smaller stable nuclides, the combined binding energy holding each of the smaller nuclides together is less than the energy needed to hold the larger nuclide together and the surplus energy is released.

  • Fusion is the fusing of two smaller atoms to form a larger atom.
  • In the case of fusion, the binding energy of the new, larger stable nuclide is less than the combined binding energy of the individual nuclides which formed it and so the surplus is energy released.

In all three transformations, decay, splitting and fusing, the nuclear reaction is accompanied by a tiny reduction in the total mass of the components and the release of energy.

The fission reaction can proceed uncontrollably and needs to be slowed down whereas the fusion reaction takes prodigious mounts of energy to speed it up and get it started. The fusion process is therefore inherently stable with no threat of runaway.

A word about Iron (56Fe26)

Iron is believed to be the tenth most abundant element in the universe and the fourth most abundant in the Earth’s crust.

The graph of binding energies above shows that the Iron atom, situated in the middle of the periodic table, has the highest binding energy and hence is the most stable element. It neither splits nor fuses with other atoms in a nuclear reaction. It represents the dividing line between fission and fusion.

The closer an element’s mass number is to that of Iron the the more stable it is and the less the likelihood that it will split or fuse with other atoms easily. The further an element is from Iron in the periodic table the less the binding energy holding it together, so that the elements at the extremes of the periodic table are the least stable and the most reactive. The large heavy atoms at the top of the table can achieve more stable equilibria by fission and the small light atoms at the lower end of the table can reach more stable states by fusion.

Attempting to fuse two atoms which are heavier than iron or to split an atom which is lighter than iron will require energy to be expended and will result in daughter elements, with less stable atoms having less binding energy, further way from the maximum stability point, .

In summary – Nuclear fission in an element heavier than Iron produces energy and fission in any element lighter than Iron requires energy. By contrast, nuclear fusion reactions between elements lighter than Iron produces energy and fusion in elements heavier than Iron requires energy.

Nuclear Decay

Nuclear or radioactive decay was first discovered in some naturally occurring minerals containing elements such as Uranium and Radium. It is the spontaneous process which occurs in radioactive materials by which the nuclei of unstable atoms, the parent nuclides, gradually break up and are transformed into more stable isotopes or into atoms of a different type, the daughter nuclides, consequently losing energy by emitting radiation in the form of ionised particles and / or electromagnetic waves.

Example

The most common isotope of Uranium, U-238 decays by alpha decay to form Thorium-234, a radioactive silvery metal, with the emission of one Helium atom (alpha particle). Thus

238U92    ⇒    234Th90    +    4He2

The daughter nuclide (thorium-234) has 2 fewer protons and neutrons than the parent nuclide (uranium-238)

At the atomic level, nuclear decay is a random process so that it is impossible to predict when a particular atom will decay. However in practical samples which contain a large number of similar atoms, the average decay rate is predictable.

     

  • Radiation and Energy Release
  • The nature of the decay and the energy released depend on the specific elements involved and the type of radiation emitted by the decay. Nuclear decay may be accompanied by up to three types of ionising radiation plus non-ionising neutron radiation.

    • Alpha ( α) radiation
    • Alpha particles are Helium – 4 nuclei (2 protons and 2 neutrons). They are large, heavy particles with relatively low energy and are readily stopped by a sheet of paper.

      Typically an alpha decay of a single Uranium-238 atom releases 4.3MeV (6.9 X10-13 J) of energy. (but the rate is random and not controlled)

    • Beta ( β) radiation
    • Beta particles are electrons. They have high energy but can be stopped by a thin sheet of aluminium.

      The energy released in a typical β-decay compared with alpha emission is very low, with the energy of a single electron being in the order of 1eV (1.6 X 10-19 J). Most of this energy is in the form of the kinetic energy of the emitted electron.

    • Gamma( γ) radiation
    • Gamma radiation is high frequency electromagnetic radiation (waves), consisting of high energy photons (not particles). Similar to X rays, but carrying much more energy, gamma rays have high penetrating power but can be absorbed by thick lead shielding or several feet of concrete. (X rays come from the electron shells whereas gamma rays come from the nucleus).

      Gamma decay may be spontaneous or induced. This is because atoms can absorb photons and re-emit them at many different energies. The consequence is that the energy released by a single gamma radiation event may be in the range from 10,000eV to 10MeV.

    • Neutron Radiation
    • Neutron rays consisting of free high energy neutrons are considered to be non-ionising radiation since neutrons carry no charge. They are not the usually result of decay but of nuclear fission or possibly fusion during which neutrons may be ejected. (See below). Spontaneous neutron emission (decay) can occasionally occur however with some isotopes of atoms containing excess neutrons and some very heavy atoms in which a neutron is simply ejected from the nucleus.

      Neutron radiation is best absorbed by materials containing hydrogen such as water or plastic. Shielding against neutron radiation may be provided by 0.5 m to 2 m of water depending on the neutron energy.

      The initial energy of a neutron is about 1 MeV (1.6 X 10-13 J)

  • Decay Energy
  • The break up of a single atom with the release of energy is called a decay event. The amount of energy released in each event is equal to the difference in the binding energy of the atom before the reaction and the sum of the binding energies of the decay products resulting from the reaction. This amount is very small, and is measured in electronVolts (eV) (or Millions of electronVolts MeV)

    For a material sample, the number of events occurring is proportional to the number of atoms present, in other words the mass of the sample. For practical samples, it is more convenient measure the rate of energy release rather the absolute amount of energy released, in other words, the power, measured in Watts.

    Decay Rate and Isotope Lifetime

    The unit of radioactive decay or the frequency of nuclear events, is known as the Becquerel (Bq) which is defined as one transformation (or decay event) per second.

    Since radioactive decay results in the emission of ionised particles, a simple way of measuring the number of events is by counting the number of particles (ions) as they are released using devices like Geiger counters.

    • Nuclear Decay

      Rate
    • The rate of nuclear decay or energy released is thus proportional to the amount of radioactive material remaining in the sample and the frequency of the nuclear events. This is the classic exponential decay represented by the equation:

      Nt = N0e-λt

      where

      N0 is the initial quantity of radioactive (decaying) nuclides measured by mass or numbers of atoms

      Nt is the number of nuclides remaining ( not yet decayed) after time t

      λ is the decay constant (a measure of the rate at which the nuclide releases radioactive emissions)

      e is the natural exponential = 2.718.

      Note that nuclear disintegrations are randomly occurring events and the value of λ is a statistical probability.

      The rate of radioactive emissions of a radioactive sample is directly proportional to the amount of radioactive nuclides present in the sample. Thus:

      A=λNt

      so that

      A=λN0e-λt

      where A is the activity or frequency of nuclear events or disintegrations per second in Becquerels

      The mean, or average lifetime of a nuclide, (Τ) also called the time constant , is the sum of the lifetimes of all the individual nuclides in a sample, divided by the total number of nuclides present. It is the reciprocal of the decay constant. Thus:

      Mean Life Τ=1/λ

       

    • Half Life
    • The rate of decay of a radioactive nuclide is usually quoted as its half-life.

      The half-life () is the time when the expected number of nuclides that have decayed is equal to half of the original number.
      (That is the time when when Nt = N0/2)

      Substituting in the decay equation (Nt = N0e-λt)

      2 = e

      Rearranging, the half life is given by:

      = Ln (2) /λ = 0.693

      where Ln (2) is the natural logarithm of 2 = 0.693

      Examples 1: Half life

      Different materials have different rates of decay and are characterised by their half lives.

      The half life of Uranium-238 is 4.5 billion years, roughly the age of the earth. The rarer Uranium-235 (0.72% of all Uranium) has a half life of 704 million years and Plutonium-239 which is virtually non existent in nature has a half life of 24 thousand years. Radium which is found in very small quantities in Uranium ores has thirteen isotopes, the most common of which is Radium-226 which has a half life of 1622 years.

      The shorter the half life of a radioactive element, the less of it will remain in the earth’s crust.

      Cobalt-60 used in medical applications is not found in nature due to its short half life of 5.27 years. It is produced artificially by neutron activation of Cobalt-59

      The half life of the Carbon isotope 14C6 decaying to Nitrogen 14N7, as used for radiocarbon dating, is 5,730 years.

      The beta decay of the Nitrogen isotope 16N7 transforms the Nitrogen atom into an Oxygen 16O8 atom within a few seconds of the Nitrogen isotope being created.

    • Activity Rate
    • The activity rate in Becquerels per gram is given by

      A/M=λNt / M = N0*ln(2)/, x M

      where

      M is the molar mass of the atom (Assuming the initial quantity of radioactive material = 1 mole)

      N0 is the number of atoms per mole (Avogadro’s number).

      is the half life of the atom in seconds (1 year = 31.536 x 106 seconds)

      Example 2 – Cobalt-60 Activity rate

      The molar mass M of the Cobalt-60 nuclide is is 59.93 grams

      The half life is 5.27 years

      Thus the activity rate per gram is

      A/M = 6.022 x 1023 x 0.693/ (5.27 x 31.536 x 106) x 59.93 = 41.9 x 1012 Bq/g (or 41.9 TBq/g)

    • Radiated Power
    • The radiated power associated with each decay event is given by

      W = Δm * A/M

      or W = E * A/M

      Where

      W is the radiated power

      Δm is the mass defect due to the disintegration of the isotope

      E is the binding energy released (equivalent to the mass defect)

      Example 3 – Cobalt-60 Radiated Power

      Cobalt-60 decays into Ni60.

      The mass difference, Δm is 0.00303 amu (atomic mass units).

      The corresponding radiated energy E is 2.8 MeV or 4.48 x 10-13 Joules (or Watt seconds)

      From the radiated power equation the radiated power per gram of Cobalt-60 is given by:

      W = E x A/M = 4.48 x 10-13 X 41.9 x 1012 = 18.77 W/g

    Nuclear batteries use the heat evolved from nuclear decay.

     

Nuclear Fission

Nuclear fission occurs when a neutron collides with a nucleus of a large atom such as Uranium and is absorbed into it causing the nucleus to become unstable and thus split into two smaller more stable atoms with the release of more neutrons and a considerable amount of energy. Nuclear fission can occur naturally with the spontaneous decay of radioactive material or it can be initiated by bombarding the fuel consisting of fissionable atoms with neutrons. Neutrons, which are electrically neutral, can penetrate relatively unhampered into the atomic nucleus and are used as the bullets to initiate the fission rather than protons because, with a positive charge, the protons would be strongly repelled by the positively charged nucleus. See Coulomb Barrier below.

  • Fissile Material
  • Fissile materials are those fissionable materials which are capable of sustaining a chain reaction when struck by neutrons with low kinetic energy (Slow or thermal neutrons).

    The three most important fissile materials which can be obtained in large enough useful quantities are Uranium-233
    and Uranium-235, both dense soft silvery metals and Plutonium-239, also a dense silvery white metal.

  • Fertile Material
  • Fertile materials are isotopes which are capable of becoming fissile by capturing fast moving neutrons possibly followed by radioactive decay. Examples are Uranium-238, Plutonium-240 and Thorium-232.

  • Fissionable Material
  • Fissionable materials are those whose atoms can undergo induced nuclear fission when struck by a free neutron. Fertile materials need a fast moving neutron to initiate fission while fissile materials need a slow moving neutron for fission.

    Fissionable materials are not necessarily fissile. Thus, although Uranium-238 is fissionable, it is fertile but not fissile.

  • Fission Energy Release
  • Several isotopes of uranium can undergo induced fission. But the only naturally occurring isotope in which fission can be induced with thermal neutrons is Uranium-235 which splits into Barium-141, a soft silvery metal, and Krypton-92, an inert gas, and surplus free neutrons averaging about 2.4 neutrons per event. The following diagram shows the process in more detail.

     

    Nuclear Fission Chain Reaction

    The process can be represented by the following equation:

    235U92    +   1 n0   ⇒    140Ba56    +    96Kr36    +    3 1 n0    +    @ 202MeV

     

    The energy released by fission of one atom of Uranium-235 is 200 MeV

    The energy released at the atomic level can be calculated from the binding energies of the parent and daughter atoms as shown in the following table:

    Binding Energy Change with Fission

    Atom

    Number of Nucleons

    Binding Energy
    Per Nucleon (MeV)

    Total Binding Energy per Nuclide (MeV)

    Combined Binding Energy (MeV)

    Fission Energy Release (MeV)

    Uranium-235

    235

    7.6

    1786

    1786

    166.3

    Barium-141

    141

    8.3

    1170.3

    1952.3

    Krypton-92

    92

    8.5

    782

    Other Fission Products (Particles and Radiation)

    33.7

    The Uranium-235 nuclide has a binding energy of about 1786 MeV. The total binding energy of the nuclides of Barium and Krypton which remain after fission amount to about 1952 MeV. The difference of 166 MeV corresponds to the energy released in the fission process. In addition there will also be several small energy releases totaling about 33 MeV associated with ejection of the neutrons and other particles as well as beta and gamma radiation.

    Thus the total energy released by the fission of 1 atom of Uranium-235 is about 200 MeV which corresponds to 3.2 X 10-11 Joules.

    The energy released from practical amounts of fuel can be calculated as follows:

    1 Atom of Uranium-235 weighs 235 amu (atomic mass units) = 3.92 X 10-25 Kg

    Therefore 1 kilogram of Uranium 235 contains 1/235amu atoms = 2.54 X 1024 atoms

    The energy released from 1 kilogram of fuel is therefore (3.2 X 10-11) X (2.54 X 1024) = 8.1 X 1013 Joules (or 22.5 GWh)

    The mass consumed in the transformation is given by Einstein‘s formula E=mc2

    From one atom of Uranium-235 the mass of Uranium actually converted into the 200 MeV of energy is 3.56 X 10 -28 Kg, an almost infinitesimal amount.

    From the one kilogram of Uranium-235 fuel consumed the mass of Uranium actually converted into energy is (3.56 X 10 -28) X ( 2.54 X 1024) = 9.04 X 10 -4Kg = 0.9 grams

    By comparison, the fission of one atom of uranium produces 10 million times the energy produced by the combustion of one atom of carbon from coal.

    Just 0.6 grams of Uranium were consumed by the atomic bomb which devastated Hiroshima in 1945.

  • Chain Reactions
  • As noted above, nuclear fission is initiated by bombarding the nuclei of large unstable atoms with neutrons which cause nuclei to split releasing more neutrons. These neutrons released by the fission process can go on to split further atoms thus releasing even more neutrons. If the number of fissile atoms is small, as in a low mass sample, or if they are widely dispersed, as in an impure sample, most of the neutrons released by the initial fission will not encounter more fissile atoms. They will lose their energy by collision with other atoms and molecules and the reaction will die out. If however there is a large mass of more concentrated fuel, a larger number of neutrons will impinge on more fissile atoms triggering yet more fissions in a chain of events creating more neutrons as each neutron is absorbed. The reaction thus becomes self sustaining and the mass at which the chain reaction just becomes possible is called the critical mass.

    K is the effective multiplication factor K is defined as the the ratio of the number of neutrons produced by fission in one generation to the number in the preceding generation. It refers to the conditions of the population of neutrons within the reactor core. This is not the same as the average number of neutrons created by the fission reaction (2.4 in the case of Uranium-235) since some neutrons are absorbed in non-fission reactions and others escape from the system without being absorbed. The way in which a fission chain reaction proceeds depends on the value of K.

    • Sub-criticality (K < 1): The system can not sustain a chain reaction. A reaction may be started by external neutrons but it dies out fairly rapidly.
    • Criticality (K = 1): Every fission cause on average one more and the reaction continues at steady rate. This is the operating state of a power reactor.
    • Super-criticality (K > 1): With a very high concentration of fissile material, each fission cause K more fission and the number of neutrons escalates exponentially in an uncontrollable chain reaction a possible explosive release of energy.

    Once a critical mass of fuel has been assembled in the reactor core, the population and energy of the neutrons must be controlled to prevent the possibility of a runaway action with disastrous consequences, while at the same time maintaining the chain reaction. This is the function of the control rods whose purpose is to remove neutrons from the reactor core.

  • Critical Mass
  • In practical terms the effective critical mass depends on many other attributes, such as the degree of enrichment of the fuel, its shape, temperature, density, and whether it is contained within a neutron-reflective substance. The minimum critical mass of Uranium-235 is a 52 Kg sphere 17 cm in diameter. For Plutonium-239 the corresponding figures are 10 Kg in a sphere of 9.9cm diameter. Taking into account the degree of dilution of the desired isotope in the fuel bulk, the critical mass of Uranium-235 enriched to 20% will be 400Kg rising exponentially as the enrichment is decreased further.

  • Other Nuclear Fission Reactions
  • The content of fissile Uranium-235 used in nuclear reactors is less than 1% in reactors using natural, unenriched fuel and up to 5% or 6% in reactors using enriched fuel. Almost all of the balance (94% to 99%) is non fissile Uranium-238 with a tiny amount (0.0055%) of Uranium-234. The free neutrons bouncing around inside a Uranium reactor don’t just react with the Uranium-235, they can also react with other Uranium isotopes they encounter as well as any other elements present in the nuclear pile to produce other transmutations and disintegrations.

    • Plutonium
    • On a cosmic timescale, Plutonium has a relatively short half life of only 24,000 years which means that it does not occur naturally on earth. On a contemporary timescale however 24,000 years is an awful long time for Plutonium waste, produced by nuclear reactions, to remain radioactive.

      • Production
      • Since the bulk of the fuel charge in a conventional Uranium fuelled reactor is Uranium-238, the free neutrons released by the fission of Uranium-235 have a high probability of colliding with Uranium-238 atoms. The collision of both fast or slow neutrons with Uranium-238 can result in the capture of the neutron and the transformation of the Uranium-238 into Uranium-239, an unstable isotope which decays within a few hours to become Neptunium-239 with the emission of a beta particle (an electron). This unstable Neptunium isotope undergoes further beta decay losing another electron during the next several days to become the more stable Plutonium-239, one of fifteen isotopes of Plutonium, which has a half life of 24,000 years.

      • Fission
      • Plutonium-239 however is fissile, more readily so than Uranium-235 emitting more excess neutrons per fission than Uranium-235 so that a chain reaction can be achieved with less than one third of the critical mass of fuel . Plutonium-239 can however also capture fast neutrons as well as slow neutrons causing even more fissions.

        A slow neutron can split Plutonium as follows into Barium and Strontium with the emission of 3 neutrons and energy of 207 MeV which is not much different from the energy released by the fission of Uranium-235

        239Pu94    +   1 n0   ⇒    142Ba56    +    95Sr386    +    3 1 n0    +    @ 207 MeV

      The production of Plutonium-239, the fuel used in nuclear weapons, is thus inevitable in conventional Uranium fuelled nuclear reactors and Plutonium fissions provide about one-third of the total energy produced in a typical mature Uranium fuelled commercial nuclear power plant.

  • Power from Nuclear Fission
  • Nuclear power generation is now firmly established throughout the world and is based on controlled nuclear fission. See the page on Nuclear Fission – The Practice

Physiological Effects of Nuclear Radiation

The term Nuclear Radiation normally refers to radiation with sufficient energy to cause ionisation of the materials on which it impinges.

The Cause

High-energy alpha (α), beta
(β)
and gamma (γ) radiation can transfer their energy upon interaction with other matter, knocking
out electrons from neutral atoms or molecules on which they may impinge, leaving electron-deficient
atoms or molecules called ‘positive ions’ and free electrons in a process known as ionisation. This ionisation can be measured by counting the number of ions formed using devices such as Geiger counters.

Alpha and beta rays are relatively harmless unless emitted inside the human body, but gamma rays cause damage similar to, but more serious than, X rays such as burns and cancerous mutations.

Very high levels of radiation may not just strip electrons from their atoms, if high enough, it can cause disintegration of the atomic nucleus creating radioactive isotopes or in extreme cases causing the nucleus to split into smaller particles (nuclear disintegration or fission).

Neutron radiation can induce non-radioactive atoms, including the body tissues, to become radioactive, which makes it one of the most dangerous radiations. This capability however also has practical applications in manufacturing isotopes for use in nuclear medicine.

See more about RF radiation damage and X-rays.

The Exposure

The exposure to ionising radiation is measured
in terms of the amount of energy imparted by the radiation
to the material through which it is passing and is known as the radiation dose, expressed in ‘Gray’ (Gy) after the British medical physicist. One Gray corresponds to the deposition of 1 Joule
of energy in 1 kg of the exposed material.

The Effect

When nuclear radiation strikes complex biological molecules, such as proteins or nucleic acids, it may fracture the molecules and prevent their proper functioning. This can result in rupturing the cell membranes, loss of cell vitality, decreased enzyme activity, initiation of cancer, and genetic mutations. Rupturing of the cells causes them to lose their contents and die and ultimately the functions associated with the cells cease. Death occurs because of the direct loss of vital organs or because of secondary infections resulting from the breakdown of the immune system. The effects are cumulative and depend on the type of radiation and the dose received.

The magnitude of the effect depends on the intensity of the radiation, the distance from the source, the presence of absorbent materials in the intervening space (including air) and the duration of the exposure. Radiation workers wear badges made of photographic film which indicate the exposure to radiation.

The actual biological damage caused by the radiation depends on its physiological effect and is measured in Sieverts (Sv) after the Swedish medical physicist. Sieverts are related to Gray by a so called "quality factor" (Q) representing their potential for doing damage. A more appropriate name for the weighting factor would perhaps have been the "damage factor".

The Gray is the dose, the Sievert is the corresponding biological risk.

  • 1 Joule of beta or gamma radiation absorbed per Kg of tissue (1 Gy) has 1 Sievert (Sv) of biological effect. (Q=1)
  • 1 J/Kg (1 Gy) of alpha radiation has 20 Sv effect (Q=20)
  • 1 J/Kg (1 Gy) of neutrons has a 10 Sv effect (Q=10)

Radiation Dose Safety Limit

The Sievert is a relatively large unit with an exposure of 1 Sievert increasing the risk of cancer by 5%, while an exposure of 10 Sieverts can be fatal within days. Typical exposure levels are much lower and are measured in millisieverts (mSv).

The average exposure in the United States, from natural sources of radiation, mostly cosmic radiation and radon gas released from the earth’s crust, is 3 mSv (300 millirems) per year at sea level and slightly higher at higher elevations. Similarly the average yearly background radiation in the UK is 2 mSv.

The current federal occupational limit of exposure per year for an adult worker “as low as reasonably achievable (ALARA); however, not to exceed 20 mSv (2,000 millirems)above the 3 mSv of natural sources of radiation and any medical radiation. For workers using radiation the limit is slightly higher at 50 mSV above background . Readings typically are taken monthly. A federal advisory committee recommends that the lifetime exposure be limited to a person’s age multiplied by 10 mSv (example: for a 65-year-old person, 650 mSv).

Radiation Dose from Medical Radiological Tests

Typical exposures from medical investigations using X-rays are as follows:

  • Single chest X-ray                 0.1 mSv
  • Single mammogram             3 mSv
  • Full body CAT or CT scan   10 mSv

Continue to Nuclear Fusion Theory
Continue to an overview of Fusion Reactors

About the author, Barrie Lawson:


Barrie graduated from Birmingham University with a degree in Electrical and Electronic Engineering in 1964. Since then he as has worked at Director level in many branches of the electronics industry including military electronics, telecommunications, computers, automotive and consumer electronics. During the last 10 years he has been involved in the battery business, originally as Chairman of MPower Batteries, a custom battery pack making company in Scotland which he helped to found and later in China where he set up a similar business. He is currently Chairman of CHE EVC, another battery startup company pioneering some interesting new technologies. In his spare time he writes and maintains the Electropaedia web site, a comprehensive knowledge base about batteries and energy sources.